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An Estimation Problem with Poisson Processes

By
Alan E. Gelfand
1., Imtroduction

This paper considers the following problem. Suppose we

observe a collection of independent Poisson processe§, xi(:).

1=1,2,...,0 such that

xi(t) -~ roair.t)
with
Xi(t) - Gip(t) .

t
p(t) = {)p(u)du .

If all the processes are observed up to a fixed time point T ,

Bow may we estimate p(t)? If wve assume p integrable on [0,®)

and without loss of generality set p(®) =1 then each xi(t)

converges in distribution to xi(w) where

X, (=) ~ Bo(5) .

In section 2 we formalize the mathematical setting for this

problem. 1In section 3 we describe two estimation approaches and

illustrate these approaches with two choices of @ . Application of this

sort of estimation problem arises when there is interest in the conditiomal

distribution of X(t) given X(«) that is, in the proportion of
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occurrences of a process wvhich may be expected by time t . In section 4

a successful application of the methodology to the active life of a

Judicial opinion is described.

2. The Set Up
Suppose
X(t) ~ By(A(r))
with

A(t) = Sp(t) .
Suppose further that

(i) p 1is integrable with
t
p(t) = [ p(u) du
0

and that 1lim p(t) Z p(=) =1 .,

t »

(11) p(t) strictly decreases in t , p(0) < =

(111) p'(t), o"(t)  exist, t >0 .

Two particular examples of interest in the sequel are

py(tsa) = e ™ . a>0 with

pl(t;a) - 1 -

and

Di(t;a) - » @>0 with

(a+t)?

Py(tia) = t/(att) .
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Ingeneral p and p tend to look as in Figures 1 and 2.

Fig 1: A typical p(t)

Fig 2: A typical p(t)

In view of our assumptions

d
X(t) + X(w) vwhere X(®) ~ PO(G)

with interpretation




X(t) = # of occurrences of the process by time ¢t .

X(») = # of occurrences of the process at the end of time.

Why is p(t) of interest? The conditional distribution of X(t)
given X(®) 1is binomial 1i.e.
X(t) [x(=) ~ B, (X(=), p(t))

and therefore simple computation shows that
X(t -
el | xe > o) = »e)

var[ X8 | x9) > 0] = <@ 0y 0-p(e))

where
I -G S
c(§) = (1-e") L Fe- .
r

_Herice p(t) measures the expected proportion of occurrences of

the process by time ¢t . An implication of our assumptions on ¢
1s that for any interval of fixed length, the earlier in time it is placed,
the greater the expected number of occurrences in the interval.
The significance of p(t) 1is more strongly emphasized in the
case vhere we have n independent processes li(t) such that
Xi(t) ~ ro(xi(:)) i=1,...,n
where

m WORFRION

In this case we would like to synthesize information from the =n

processes to estimate the common p(t). In other words, for any

b o




individual process there would be little value in factoring a 6
from the intensity function. However, for some phenomena that we might
sample (see the application in section 4) the behaviour might be such that

from sample to sample

1) thg %bsolute intensity (i.e. expected rate of occurrence) varies
u
ii) the relative intensity (i.e. ratio of expected rate of

occurrence at two different time points) does not.

In such a case the form for li(t) in (1) is appropriate. 1In our

application we envision considerable variation in the § For some

i L]
sampled processes, occurrences will be very sparse while for others they
will be quite numerous. But again our interest is not in the 61 but

in p(t) .

Suppose then that we observe the n processes during the interval
(0,T]. How may we estimate p(t) ? (The reader may be curious as to
whether differing lengths of observation time, for differing sampled

processes can be accommodated. We will return to this question shortly.)




3. [Estimation Approaches

In attempting to estimate p(t;a)  using data in (0,T]

we consider two approaches.

A. Use the actual arrival times of the occurrences
B, Partition [(0,T] into intervals and record numbers of

arrivals in each interval.

Clearly the latter approach results in some loss of information compared
with the former. We shall obtain a measure of this loss and apply it
toour p's of interest. In applications, it may be the case that
data is gathered categorically for reasons of convenience or reliability so
that only approach B is available. Hence an indication of the loss

of information while still of interest may no longer be relevant.

Consider Approach A. From Cox & Hinkley (p.15~-16) 1if
x(t) ~ ?O(Cp(t)) and in the interval [0,T] (ordered) occurrences
are observed at Vis Vgse ..,v‘ then the unconditional likelihood

becomes i

L(p, G,n,wl Woseee ,v-)

T
-§ j p(u)du

L ()}
) - & ;IT1 plv,) e .

The conditional likelihood given X(t) = m thus becomes




O =i s i o ool

L(Pswys¥ps¥y, e e ,w.lx('r)-n%

a -6 [ p(u)du
m! GmT]; p(w,) e 0
=
- o T
-8f p(u)du/m

T
6‘[{)0(\1)(!0]“ e 0

un
3 « u! T otwp) N
i=]

free of § .

.For n samples with occurrences time ":lj’ i=1,...,0,

j=1,...,m (that is xi(r) = ‘1) » Im, =m, we similarly obtain

L(pasii ni’ wij)

. (DB B n ™ -(Z8,)p(T)
4 - [ 1T 511} m T plwy) e 1
=1 1=1 j§=1
and L(p,wijlxi('r) =m , 1=1,...,n0)
‘i
n y -
(5) = TTwt T TT plwg 2 (p(T)) T,
i=] 4=l

{Note that if sample 1 1is observed over [O,Ti] the only change to be

n -m
made in (5) 4is that (p('l‘))-m ies replaced by T]; (P(Ti)) i) .
i=

Suppose P 18 of the form p(t;a) (p of the form p(t;a))

so that with estimation of i!, p 4is specified and thus p 1is
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estimated. Then, im (2) the unconditional likelihood equations for
a and é are

9 log p(w i;tx)

CRTEAN SpD _saEmm .
3—1‘%%_11 - % - p(T3a) = O
whence
? log p(w,:a) .
3 log L i - o 9p(T;0) - .
© e T ) B3 p(T;0) 0

In (3) this conditional likelihood equation for o 1is

9 log L/m 9 log p(vi;a) 9 log p(T;a)
™ = Tl -

Hence as is well known (e.g. Cox and Lewis, Chap 3) the conditional
likelihood equation for @ 1g the same as the unconditional one.

We may rewrite (7) as

9 log(p(wiga)/p(‘l’;c))
(8) ) e - 0.

In (8) the conditional nature of the likelihood equation is most !
apparent 1i.e. P(u;a)/p(T;a) 4is the density function for an occurrence
given it occurred by time T . Thus if & 1is a solution (8)

and the usual regularity conditions are satisfied, & will be

asymptotically normal with mean the true @ and asymptotic variance
@@l where




3 log(p(¥,30) /p(Ts0)))?
\ I(@) = E da
9 log p(W;a) 2 9 log p(T;0)y2
®) 'E[T] ‘['_T_} ’

Computationally a more convenient form may be

E[ 52 1og(p(W;0) /p(T;0) )]

I(a)
302

2 , 2 .
(10) s - E 3 lng(w’a) + 9 10881’ (T;0) . i
_ 302 a

For the case of n samples, o is a solution to

™{ 9 log p(wij )

9 log p(T:;a)
oa m 30

|t~

n
(11) 2
i=1 j =]

from wvhich we see that the separation of the occurrence times by samples is
superfluous. The total of m occurrence times may be considered as

a single sample. This may be noted directly by considering the
n
occurrence times of the process Y(t) = i Z, xi(t) in ([o0,T] .

Returning to (7), consider pl(t-a) = ge Ot . We obtain

o ]
-~aT
(._ -wgd -5 . :—am =0 5

or 1
J v, =2_12 T :
i a 1-eoT ;
and
9
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(12) (@) = = -
az (l-e-aT 2

)

(Again see Cox and Lewis, p.47),

For pz(t;u) = ul(u+t)2 we obtain

or
z 1 m52a+'1‘§
Ot 20 (0+T)

and
(13) (@) = T2/362(1)2 .

We now consider approach B . Suppose we define k  intervals by

0< t < t, < ... tk = T ., Then for one sample
X(tl), x(tz) - x(tl) gy X(tk—l) - x(tk_2)|X(T) =nm
~ Multinomial (m, q;» q2""’qk)
where
p(t,) - p(t, )
- 3 j-1 -
qj p(T) » J 1,.--'k
(to z0)

For n samples let

n
7, = igdgxi(cj) - X, (¢, 1))




Then Z = (21,22,...,zk_1) is complete and sufficient given

xi(r) - m, Qid in fact is multinomially distributed as well 1i.e.
(Ilmi = m)
z -~ mltinmi&l (m’ ql gesce ’qk) .

Two natural estimation approaches arise at this point: the method of
minimum chi square and the method of maximum likelihood (method of moments

estimation might be considered as well). The former leads to consideration

of the function

k 2
321 (Z.‘l - mqj) /mqj

while the latter leads to the (conditional) likelihood function

L(p,zl,...,zk/m)

k Zj
= m.ﬂqj /Zj.

k-1
(Zk'z‘m- ;zj} .

Again presuming p is of the form p(t;a), the resulting

likelihood equation for o is

dplogim _ y 2184 |
Ja sa
o
3 log (p(t,;a) = M, ;50)  md log p(T;a) %
14) 1z - -0 . '

3 o da

Again 1f 6G (G for grouped) 1is a solution to (14), under the

usual regularity conditions GG will be asymptotically normal with mean

| 11




the true a and asymptotic_variance (I(;(tz))_1 vhere

2
9" log q. (a)
1
Ig(@) = -;z[ Iz _—au—:i—]
s 22 log q,(a)

- _ij(g) —__._.._J___

aaz

or in terms of the pjcm)

2
3(p(ti;a)-p(tj_1;a))] _{a log p(’l‘;m)]2
2 s0

- -1
16) ;o) "] (e300 - p(tj_l;u)) [

The similarity between expressions (7) and (14) and between (9) and

(16) 1s not unexpected. In fact, if as k + o , sup (t,~t 1) +0
1<¢ige ¥

it is straightforward to show that the "categorical" expressions converge
to the corresponding "continuous" ones . !
|
|

-t

In (14), consider pl(t;c) = Qe . Since ;
-0t -Qt
- e =1 _ e 3
q.a) = puy
3 l-e aT
we obtain
-at -at
-1 _ h
i1 ty e nTe
Qa7) -}z - = 0
] -at, -atJ 1-e 0T
e =1,
and
12




+t
e I V(e ) 2 -ar

as) Ig() = ]
(l-e-ar)(e -1, j) (1-e ™)

Expressions (17) and (18) can be simplified considerably if we use

equally spaced intervals. Let t = T/k whence tJ = jt . Then

(17) becomes

" at,-1

19) £z, = a(-e"O7 -mk e T (1-e70T)!
and (18) becomes
(20) T2 &% (1-e7%5)"2 | g2 7OTy2 )
In (14) consider pz(t;u) = a/(a+t)2 . Now
a(a+T) (t,~t, .)
1 4-1
q,(@) =
3 T (Mtj)(aﬂj_l)
and we obtain
zj(tjtj_l-az) n :
(21) ) a(a+tj)(a+cj_154' tar - O
and
-1 t t 2
atry [ -1 } [ : 4-1 ] 1
22 I = - ‘ - - —
(22) c@ T Z[aﬂj oty (aﬂj)z (°‘+tj-1)2 (T2

Again, equally spaced intervals simplify matter Expression (21) becomes

(20+2§-1)1)
(23) 2 VA -1 - 0(2a+T)

I (@HD) (a+(3-1)T) a(a+ T)
and (22) becomes
2 —2.2
(24) otD) X (a -J;j_l)t )_ 5 - 1 ;.
T % 7 ate)(e+(3-1)D) (a+T)

13




We now attempt comparison of the estimation approaches. Again

] is the MLE from (7) while - ac is the MLE from (14).

We employ ideas similar to those of Lindley . Given &G how may

we "correct” to & . We obtain an approximation for A= &G -8.

Lindley considers the reverse situation; from the functional form
for the ungrouped MLE he obtains a correction to the grouped MLE.
In our applications the grouped MLE is all that is available. Lindley

also considers an 1.i.d. sample while our W are clearly not so.

3

We also seek to estimate the loss of efficiency due to grouping.
Since & is most efficient we calculate the (asymptotic) relative
efficiency of GG to 8 by I(a)/IG(u) . In fact the proportion
of information lost is (I(a) ~ Ic(a))/I(a) .

To approximte A we assume equally spaced intervals. Using

Taylor's theorem

w

PUT;®- p((I-1T;0) a € P((H-3)T;0) + = p"((3-})T;0)
24

wvhence
3 log(p({F;a)- p((1-DT;@) 3 log(p(-WEim) , T2 3 [p"((4=4ptia)
o % 2% W™ o320

Hence using (14) and suppressing the arguments of o and p we have

—2

3 log o ©? 3 ]| _mdlogp

L2 % a*zazzjaa(%‘)a 2a |a"‘°
c G




In (7), presume that if v, € ((3-1)t, jt) then

p(w,30) ~ P((3-9)E50)

so that
9 1o _m3logp

To a first approximation, then

=2
t 9 "

a
G
(25) A= —
2‘ ¥ logp|l _ m 3’?:; P
3 a2 ?%
4 a
s G

Iteration can be employed to better the ~pproximation.

pl(t;a) - a?-at {25) Dbecomes

-2 . ) -8 T «-1
8% | 1 _ e ©
12 ) 2
8 -8 T
L€ 1-e G]

For pz(t;a) = c:.l(cc-!-f:)2 s (25) becomes

For

~ 2,72
<2 m ((a +T)" +a.) -1
t -3 (4 (¢} -2
= ) zjbj [___...__ -27 zjbj]

2 ) 2
ac (&G+'r)

vhere bj = Gc+(j-lg)t .

15




For the relative efficiency of 8G to &, from (9) and (16)

we obtain
E [a lo wia ]2 _ j3lo T:0 2
da a0

sz(acla) = 2 2
oyl co)e -1 [ : , 3 log p(T;o
.(p('r,a)) Z(p(tj,a) p(tj_l,u)) Ea (p(tj,u)-p(tj_l.u)i[ -{ 0 3 G.)

Let us consider our illustrative pl,p2 using equally spaced

intervals. For Py » we have

1 Tze-aT
02 ) -oT 2
(26) E££(8,|8) = (e 7) .
-EZ e-at: ) Tze-a'r
(1-e~0, 2 Qa2

For fixed T , the following limits may be easily discerned in (26).

1) t i.e. k fixed, a-+0, Eff+k2/(k2-1)

]
e
o

i1) k fixed, a+> , Eff + o

144) o fixed, t+0 i.e., k+o , Eff+1

iv) o fixed, t-+T i1.e. k*+1 , Eff »w

Letting 8 =af , with kt=T (26) becomes

(27) % gts/i) (g(s) - s?)
s2(g(s) - k2 g(s/1))
where
o 23
8 -8 28 .
g(s) = (e*-1)(1-¢%) = 321 BT

16




Table 1 evaluates (27) over a range of s and k values. For Py

1%
PN
(28) B o) = 3a_(a+T) , .
Tase) @40-0t>d 1
aT 2

@HD @+(-1DT)  (+D)

Letting s = /T with kt = T (28) becomes

-1

2,2 2
(29) 3sk’e+1)> § —<8 k3*111-l)2_ 5 - 38
(sk+j) ~(sk+(j~1))

Table 2 evaluates (29) over a range of 8 and k values. The limiting

behavior noted above for (26) also occurs for (28) with "o = 1/a".

Regardless of what parametric form was adopted for P and of what
estimation approach was used the following offers a simple éay of assessing

fit. For any two time points tys tyy ty < t, » x(tl) |x(t2) ~
Bi(x(tz), p(tl)lp(tz)). Hence (if X(tz) > 0) x(tl)/x(tz) is the

UMVU  of P(tl)/p(tz) . For any estimate p(t) Z p(t,8) we can

compare p(tl;a)/(p(tz;a) with the UMVU ratio.

17

Sttt et o imesittteitninn .




4.  An Application

One attractive application of the above methodology {s to the

matter of describing the active lifetime of a court case. More

specifically, associated with court opinions (particularly higher court
opinioms such as those of the U.S. appellate or supreme courts) is the

issue of precedential value. How much effect will an opinion have on

later opinions? One way to study this point is to record citations 3
of this opinion in later cases. It is thus of interest to examine
the pattern of subsequent citation of a case. It seems reasonable

to assume that subsequent citations arrive according to a Poisson

process. Moreover, although the intensity function will vary gréatly
from case to case the expected proportion of citations to a given time
need not. (For the data to be presented, some preliminary empirical
work using fixed points tl’ t, and comparing binomials has

supported this premise.) That is, sparsely cited cases will receive
about the same relative proportion of total cites by a fixed time as will
heavily cited cases. Our assumptions regarding p(t) ' made in section
2 seem appropriate in this context since an opinion is a bit like wine.
At first it improves with age (i.e. is more often cited) but then it
deteriorates (i.e. 18 less often cited as newer opinion diminish its value).
Estimation approach B was forced in this situation. Data collection
recorded the date an opinion was handed down along with the dates of
subsequent citation. It was decided more convenient and reliable to

categorize subsequent citations into intervals after decision date than

to convert to the exact number of days after the decision date.

18




The court cases studied in this application are all from the U.S.

Court of Appeals. They are drawn from a larger study (see Schuchman
and Gelfand) of the Federal appellate courts. Two independent samples

were snalyzed.- - One comsists of 100 cases from the Pifth circuit

court “of appeals wvhile the other consists of 100 cases from the
remaining ten circuits. In each saiipled case the date of decision was
recorded (ali dates are betieen 1960 and 1962)." . By use of Shepard's
Index we may find all later cases citing any sampled case. By examining
these citing opin:'[ons, ve may obtain the total number of citations for
any sampled case and a categorical time from date of decision to each
such citaticn. Subsequent citation of each case in each sample vas
considered tazough December 1976 thus achieving a miniomm of 13 full
years of obsaivition with numerous cases reaching to nearly 16 full
years,

\
For convenience we set T = 12 and consider t = 2, k= 6 .

The resulting 2 vectors are givem in 'rable'3. Note that the
fifth circuit opinions are more frequently cited than their other
circuit counterparts. Furthermore, we find an inexplicable, but
common, bump in both samples occurring at 2 4 i.e. for the period
between 6 and 8 years after date of decision. A test of homogeneity

between the samples yields xz = 1.290 with descriptive level = .93 .

Table 4 presents the estimation of a using both pl(t;u) and

pz(t;a) . Ve see that




S e SRS R TR T T TR T R T T e T TR T e e—

) Both functions P, and P, fit the data well

(i1) Estimation by MLE and MMx? yield very similar estimates of a
(ii1) The estimates of « for the two samples are fairly close
' (as expected from the test of homogeneity)

(iv) For the 5th circuit data using p,; and GG = .09,A = 0.0027
while for Py and &G ~ 18, A = 1.038.

v) From Tables 1 and 2 the relative efficiency for Py under the given

grouping is 1.03, for Py» 1.04,

In Table 5 we compare the fits of 1 and P, vith the ‘'best"
(i.e. UMVU) estimate as described at the end of the previous section.

We look at t, relative to = it . Again the fits

1 T A
look quite good 1.e. the maximum relative error for the exponential

model is .03, for the bilinear model .04.

How can it be that two such different functions Py and P,
fit the da*a almost identically? Table 6 clarifies the matter.

It also provides representative values of the function over time
using o= .09 in Py and a=18 in Py - We see that
during the time interval ¢t = 2 through 12 years pl(t)/pz(t)

is virtually constant. Since the assessment of fit involves p(t)

in a relative way, over the 12 years of observation P and P,
will be virtually indistinguishable. However in an absolute sgense

P, 1s preferred to Pye This follows by asking how many years
we expect to wait for a specified proportion of subsequent citations

e.g. what ig t such that pl(t) = .9 , such that pz(t) = .97

20




For p,; the ansver is 25.6 years, for Pys 162 years. Additionally
Pz (33.3) = .95 and p1(51.1) = ,99 . These proportions are
reasonable both empirically and intuitively. Thus an exponential
intensity function seems an effective descriptor for subsequent citation

of an opinion.

21




Pl(t;a) = l-e

:\E\\ 2 4 6 10 20 50

.01 34.337 11.896 7.412 4.628 2,480 1.445
.05 7.683 3.034 2,119 1.529 1.178 1.035
.1 4,364 1.951 1.491 1.210 1.061 1.010
.5 1.778 1.170 1.075 1.027 1.007 1.001

1 1.500 1.102 1.044 1.016 1.004 1.001

5 1.344 1,067 1.303 1.010 1.003 1

10 1.336 1,067 1.029 1.010 1.003 1

Table 2: Relative Efficiency for pp(t;a) = t/(a+t)

22

. 2 3 4 6 10. 20 50

a 1.333 1.125  1.067 1.029 1.010 1.003 1

5 1.337 1.127 1.068 1,029 1.010 1.003 1

1 1.350 1.131 1.070 1.030 1.011  1.003 1

5 1.893 1.323 1,170 1.072  1.025 1.006 1.001
10 5.990  2.361 1.647 1.255 1,087 1.021 1.003
50 >10°  >10* >10° 59.879 5.857  1.642 1.086

Table 1: Relative Efficiency for —ot




Sample Z1 22 23 Za Zs 26
Fifth Circuit 225 191 145 152 112 8s
Other Circuits 182 144 114 123 84 78

Table 3 : The Fifth Circuit and Other Circuit Data
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